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quences than in A/T-rich R-band sequences ( ).P � .009
Thus, the flexibility pattern is one of the features that
differentiate R- and G-bands.

As mentioned, common fragile sites were found to be
A/T rich. The pattern of high-flexibility clusters found
in the identified common fragile sites (see table 1) (Mish-
mar et al. 1998) was significantly different ( )P � .02
from that of A/T-rich control sequences mapped to R-
bands. This pattern was not different from that of A/T-
rich control sequences mapped to G-bands ( ).P � .85
These results might indicate that common fragile sites
mapped to R-bands have the flexibility patterns char-
acteristic of G-bands with the same A/T content.

Our previous analysis of potential unusual DNA
structures in FRA7H revealed a cluster of regions with
potential to form triple helixes (Mishmar et al. 1998).
Previous studies, using monoclonal antibodies to triple-
helix DNA, showed that G-bands are rich in triple-helix
DNA (Burkholder et al. 1991). Thus, clusters of regions
with potential to form triple-helix DNA might be added
to the G-band characteristics found in common fragile
sites.

Together, all the known molecular features of common
fragile sites indicate that they might consist of DNA
sequences with characteristics of G-bands embedded
within R-bands. Of what significance could this feature
be to the mechanism of fragility? We think that delayed
replication and aberrant condensation of fragile sites
might be involved. Chromosomal bands apparently rep-
resent regions with several origins of replication that are
coordinately controlled to initiate the replication pro-
cess. The presence of a relatively small region consisting
of a common fragile site with G-band characteristics
might lead to disturbances in the regional control of
replication. This might involve inappropriate initiation
of replication in the fragile region. The addition of aphi-
dicolin, which inhibits DNA elongation, might further
add to the interference in replication at fragile sites, lead-
ing to unreplicated sequences that might adopt abnormal
chromatin organization, resulting in fragility.
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Finite-Sample Properties of Family-Based
Association Tests

To the Editor:
During the past few years, there has been much interest
in the use of family-based association tests to detect link-
age between marker and disease loci, since these methods
avoid the problems of ascertaining the appropriate pop-



Letters to the Editor 911

Figure 1 Achieved type I errors for TTDT(�) and L (D), compared with specified a (unbroken horizontal line), for (from top to bottom)
, .0001, (1e-06), and (5e-08).�6 �8a � .01 1 # 10 5 # 10

ulations of cases and controls implicit in population as-
sociation studies. Although these tests were originally
developed for candidate-gene studies, the use of such
methods in genome scans has recently been proposed
(Risch and Merikangas 1996).

Perhaps the best-known family-based association test

is the transmission/disequilibrium test (TDT) for diallelic
markers, introduced by Spielman and Ewens (1993). A
number of similar tests have subsequently been sug-
gested; for reviews, see the work of Spielman and Ewens
(1996) and Curnow et al. (1998). However, it has often
not been clear how these various tests are related, and
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Figure 2 Power versus number of heterozygous parents for TTDT

and likelihood-ratio statistic L (L.R. test), when andg � 4 a � 5 #
.�810

there has been debate about the advantages and disad-
vantages of several of the tests (e.g., see Kaplan et al.
1997; Sham 1997). There is a need to investigate the
relationships between the suggested tests and to establish
which of them should be preferred in a given situation.
Determining the relative merits of competing test statis-
tics is often difficult, because the comparisons usually
rely on simulation or on asymptotic results that may be
of limited relevance to finite-sample data. Here we sug-
gest a way of avoiding these problems for diallelic mark-
ers, focusing particularly on the TDT, the extended TDT
(ETDT [Sham and Curtis 1995]), the score tests intro-
duced by Schaid (1996), and tests based on the condi-
tional likelihood of the offspring marker types when the
parental marker data are given.

We consider a sample of N families, each with a single
affected child. All individuals have been genotyped at a
marker locus with m alleles, labeled as “M1,”
M2,),Mm.” We wish to use information on the alleles
transmitted from the parents to the affected child, to test
the null hypothesis of no linkage or no association be-
tween the marker and disease. Note that we can only

test this compound null hypothesis when we have a sin-
gle affected child in each family; for families with mul-
tiple affected children, the tests discussed below are valid
only as tests of linkage, not as tests of association (Spiel-
man and Ewens 1996).

Consider a single family, with parental marker gen-
otypes g and h and with the genotype of the affected
child denoted by x. If we use CA to denote that a child
is affected, then the probability of the child’s genotype,
conditional on the parental genotype is, by Bayes’s
theorem,

P(C Fx,g,h)P(xFg,h)P(g,h)AP(xFg,h,C ) �A ∗ ∗� P(C Fx ,g,h)P(x Fg,h)P(g,h)A∗x �G

P(C Fx)P(xFg,h)A� ,∗ ∗� P(C Fx )P(x Fg,h)A∗x �G

where G is the set of possible marker types for the af-
fected child (Schaid 1996). We shall assume normal seg-
regation (which requires, e.g., absence of meiotic drive),
so that P(xFg, h) is easily calculated, leaving only
P(CAFx), the risk of disease for a particular marker ge-
notype, to be discussed.

We could model the disease locus explicitly, but it is
often more convenient (Self et al. 1991; Schaid 1996) to
work directly with the marker genotype, by putting

. The fx then reflects both the disease-locusf � P(C Fx)x A

penetrances and the strength of allelic association be-
tween the marker and disease loci in the affected chil-
dren. Note that parameters are needed inm(m � 1)/2
the general model; this will be large for highly poly-
morphic markers. Schaid (1996) derives score tests for
general fx and for various special cases representing par-
ticular disease models. In particular, Schaid shows that,
for a log-additive model—that is, one in which allelic
effects combine multiplicatively at the marker, so that

—the score test for a diallelic marker is the TDTf � f fx x x1 2

statistic.
Note that we are using this multiplicative model as a

convenient approximation, rather than as something
that we believe is exactly correct. If the true disease
model is not multiplicative, then tests based on the mul-
tiplicative model remain valid in the sense of having the
correct size, but they may not be optimal, in that there
may exist other test statistics with higher power. How-
ever, the multiplicative model has the advantage of re-
quiring ( ) parameters, where tests derived bym � 1
means of the general model need . Thism(m � 1)/2
means that tests based on the multiplicative model can
be more powerful than general alternatives even when
the allelic effects do not combine multiplicatively at the
marker (e.g., see Schaid 1996).

Schaid (1996) comments that likelihood-ratio tests
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could be used instead of score tests, but he opts for score
statistics because of their ease of calculation. Here we
derive the likelihood-ratio test for the multiplicative dis-
ease model discussed above.

It can be shown (e.g., see Curnow et al. 1998) that,
in the presence of allelic association, the marker alleles
transmitted to an affected child from the child’s two
parents are independent if and only if the multiplicative
model holds at the marker. Therefore, under the mul-
tiplicative model, ,P(xFg,h,C ) � P(x Fg,C )P(x Fh,C )A 1 A 2 A

where x1 and x2 are the alleles transmitted from parents
with genotypes g and h, respectively. Now,

P(x � iFg,C ) � 01 A

if g ( i and g ( i ,1 2

P(x � iFg,C ) � 11 A

if g � g � i ,1 2

f P(x � iFg)i 1P(x � iFg,C ) �1 A f P(x � g Fg) � f P(x � g Fg)g 1 1 g 1 21 2

otherwise .

so that, if and , theng � (i,j) x � i1

P(x Fg,C ) � 11 A

if i � j ,

fiP(x Fg,C ) �1 A (f � f )i j

if i ( j ,

because .P(x � iFg) � P(x � j d g) � .51 1

Let nij be the number of transmissions of Mi from MiMj

parents in our sample of 2N parents. Then L(f), the
likelihood of the child genotypes, given the parental ge-
notypes, under the multiplicative model, is

n nij jim
f fn � n i jij jiL(f) � �� ,( ) ( ) ( )n!i�1 j i f � f f � fij i j i j

by derivation from the formula above. This can be max-
imized over f, to give LA. The null hypothesis is no link-
age or no association between marker and disease; in
this case, the two parental marker alleles are equally
likely to be transmitted, so that the likelihood under the
null hypothesis is

m nij1n � nij jiL � �� .0 ( ) ( )n!i�1 j i 2ij

The likelihood-ratio statistic is , and, by stan-l � L(f)/L0

dard theory, �2 ln(l) has an approximate x2 distribution
with df, under the null hypothesis.m � 1

Note that L(f) is equivalent to the likelihood derived
by Sham and Curtis (1995), with our fi being equivalent
to their dii. Sham and Curtis (1995) made assumptions
that, at first sight, seem to be rather different from those
which we have made here: they assume that there is no
recombination between marker and disease loci and that
parental transmissions of marker alleles are independent.
However, as we have noted above, parental transmis-
sions are independent if and only if the multiplicative
model holds at the marker locus; the two sets of as-
sumptions are therefore directly equivalent, and we
should expect to obtain the same likelihoods.

In summary, the score test for the multiplicative model
is Schaid’s (1996) general TDT statistic, and the likeli-
hood-ratio test is Sham and Curtis’s (1995) ETDT sta-
tistic. By standard theory (Cox and Hinkley 1974), these
tests are asymptotically equivalent; we will now show
that, for diallelic markers, a stronger result holds.

Remember that in this case the score test is the TDT
of Spielman et al. (1993), so that, for a test of size a,
we reject the null if

2(n � n )12 21T � 1 k ,TDT TDTn � n12 21

where the critical value kTDT is chosen to give the re-
quired type I error rate a. In most cases, it seems that
L(f) must be maximized numerically, but, if , thenm � 2
we have

n n12 21f f1 2L(f) ∝ ,n �n12 21(f � f )1 2

and it is easy to show that L(f) is maximized when
. The likelihood-ratio test with size a isf /f � n /n1 2 12 21

therefore likely to reject the null hypothesis if

n n12 21n n12 21
L � 2 ln 1 k ,Ln �n{ }12 21[0.5(n � n )]12 21

where, again, the critical value kL is chosen to give the
required type I error rate a. Usually, asymptotic results
are relied on, so that .2k � k � xL TDT 1,1�a

Now suppose that there are H heterozygote parents
in the sample. The values of TTDT and L are completely
determined by n12, because . Both of then � H � n21 12

aforementioned tests can be rewritten with rejection re-
gion where by sym-{c 1 n } ∪ {n 1 c }, c � H � cl 12 12 u l u

metry; in fact, it is clear that any reasonable test statistic
must have this form. Moreover, under the multiplicative
disease model discussed above, the probability that
a heterozygote parent will transmit the M1 allele rath-
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er than the M2 is , so that, condi-n � f /(f � f )1 1 2

tional on H heterozygote parents in the sample,
. The constant cu can be chosen ton ∼ binomial(H,n)12

give the approximate type I error rate, by use of this
binomial distribution; any cu corresponds to a particular
kL and kTDT, and, clearly, for a particular cu, the test
statistics will be exactly equivalent. It follows that, pro-
vided that type I error rates are properly controlled by
appropriate choice of the critical values kL and kTDT, L

and TTDT will have identical power. However, the ap-
propriate critical values will be the same for the two
tests only if L and TTDT have the same distribution, for
then we will have for any cu; if not, then settingk � kL TDT

will give different rejection2k � k � xL TDT 1,1�a

regions—and, therefore, different sizes and powers—for
L and TTDT. We now consider the properties of the test
statistics if the x2 approximation is used.

It is convenient to put so thatg � f /f n � g/(1 � g)1 2

and to condition on there being H heterozygote parents,
so that the distribution of the tests statistic depends only
on the two parameters H and n. Note that the null hy-
pothesis that the two parental maker alleles are equally
likely to be transmitted corresponds to . We cang � 1
investigate the actual size and power of the test directly,
because, for any a, it is easy to calculate the probability
that TTDT or L is greater than , via the above bi-2x1,1�a

nomial distribution. We consider , .0001,a � .01 1 #
, and . The first two values of a might be�6 �810 5 # 10

appropriate for candidate loci, whereas the last has been
suggested, by Risch and Merikangas (1996), for genome
scans using the TDT.

First, consider the actual type I error rates, which are
shown in figure 1, for , .0001, , and�6a � .01 1 # 10

. Achieved type I errors for L oscillate about�85 # 10
the asymptotic size, a, with the amplitude of the oscil-
lation being relatively greatest for small a. Achieved type
I errors for TTDT are less variable, and TTDT is conser-
vative for small a. Overall, the null distributions of TTDT

and L are well approximated by , for most a, with2x1

the approximation much less satisfactory in the extreme
tails of the distribution, despite reasonably large sample
sizes. This suggests that the x2 approximation should
not be used in genome scans, unless sample sizes are
very large. The oscillation of the type I errors about the
asymptotic size is caused by the underlying discreteness
of the data; for example, the critical value is 29.722x1,1�a

when , and, if or , this�8a � 5 # 10 H � 138 H � 139
is exceeded by TTDT only if or . Then � 102 n � 10221 12

type I error rate for TTDT for or isH � 138 H � 139
therefore ) when ,P(n � 102) � P(n � 102) g � 112 21

which is greater if than if . However,H � 139 H � 138
if , then TTDT exceeds 29.72 only ifH � 140 n � 10312

or , so that the type I error rate for TTDT isn � 10321

, for , and this is lessP(n � 103) � P(n � 103) g � 112 21

than the type I error rate for . Note that theH � 139

effect on the error rate can be large, even for reasonable
sample sizes; for example, if , then the achievedH � 118
type I error rate for L is , nearly twice the�88.55 # 10
nominal .�85 # 10

We stress again that, if critical values are correctly set,
then TTDT and L have identical size and power. However,
the x2 approximation does not provide the correct crit-
ical values, and we will now show that this also leads
to misleading power results. In particular, the fact that
L tends to have higher type I error rates than does TTDT,
when the x2 approximation is used, can result in L ap-
pearing to have more power than TTDT does; for ex-
ample, consider figure 2, which plots the power of L

and TTDT as a function of H, for and�8a � 5 # 10
. We see that, although TTDT and L have similarg � 4

power for small g, L can have considerably higher power
for large g, particularly for small a. The fact that power
does not increase monotonically with sample size is, at
first sight, surprising but, as with the oscillations in the
type I error that have been noted above, is explained by
the underlying discreteness of the data.

We have derived the likelihood-ratio test for a sample
of families, in each of which there is a single affected
child and all individuals have been genotyped at a par-
ticular marker locus, under the assumption that allelic
effects combine multiplicatively at the marker. This test
proves to be the ETDT (Sham and Curtis 1995), because
the alleles transmitted to an affected child are indepen-
dent if and only if the multiplicative model holds. For
diallelic markers, the finite-sample properties of this sta-
tistic can be investigated by exact calculation, because
then, for H heterozygous parents, only outcomesH � 1
need be considered, and these are easily enumerated. The
computations become more complicated if the marker
under consideration has more than two alleles, but, as
a way of assessing the properties of test statistics, this
type of exact calculation may be preferable to simula-
tion, because it gives the exact sampling distribution of
the test statistic under investigation, at any point in the
parameter space.

For diallelic markers, the likelihood-ratio test L and
the corresponding score test TTDT are exactly equivalent,
provided that type I error rates are correctly controlled.
Exact calculation of the distribution of L and TTDT shows
that type I error rates are adequately controlled by re-
liance on asymptotic distributions for a that are appro-
priate for candidate loci, but not for the very small a

required for genome screens. It thus seems that, if L or
TTDT is to be used in genome scans, then either signifi-
cance levels must be calculated exactly, by means of the
binomial distribution given here, or Monte Carlo ap-
proaches (Kaplan et al. 1997; Morris et al. 1997) must
be used. Note also the exact test of Cleves et al. (1997).

It is easy to derive corresponding likelihood tests for
other models, such as those for recessive or dominant



Letters to the Editor 915

diseases, or for the general model in which no relation-
ship is assumed between the fx, and it is also easy to
extend the test to cope with multiple affected or unaf-
fected sibs (Thompson 1997). The properties of such
tests deserve further study; comparisons with the cor-
responding score tests (Schaid 1996) would be of par-
ticular interest. By analogy with the results given here,
reliance on asymptotic null distributions should be
avoided for such tests; also see the work of Chapman
(1976). Monte Carlo approaches are always available,
and they provide a simple alternative to asymptotic
approximations.

Finally, note that the results given here illustrate the
problems of comparing the test statistics by stochastic
simulation, especially when asymptotic distributional re-
sults are relied on. When the x2 approximation is used,
the properties of L and TTDT are very sensitive to the
value of H, and to exhaustively survey the relevant pa-
rameter space by simulation would be very time con-
suming. On the basis of simulation results produced by
the asymptotic x2 distribution, it would have been easy
to conclude, according to the values of a, H, and g

studied, either that L is preferable to TTDT, because it
has higher power for some parameter values, or that
TTDT is preferable to L, because L can be anticonservative
for certain values of H. For example, if �8a � 5 # 10
and , then TTDT is conservative, whereas theH � 100
achieved type I error rate for L is close to the nominal
value, so we might conclude that L is preferable. How-
ever, for and , TTDT is still con-�8a � 5 # 10 H � 110
servative but L is unacceptably anticonservative, and we
would prefer TTDT. As we have seen, we would be mis-
taken in both cases, because the differences are due to
failure of the asymptotic x2 approximation, rather than
to differences between the test statistics.
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